HyPAM: A hybrid continuum-particle model for incompressible free-surface flows
نویسندگان
چکیده
Three major issues associated with numerical simulations of complex free-surface flows, viz. interface tracking, fragmentation and large physical jumps, are addressed by a new Hybrid continuum-particle model (HyPAM). The new model consists of three parts: (1) the Polygonal Area Mapping method [Q. Zhang and P. L.-F. Liu, A new interface tracking method: The polygonal area mapping method. J. Comput. Phys., 227(8):4063-4088, 2008]; (2) a new algorithm that decomposes the interested (water) phase into a continuum zone, a buffer zone and a particle zone, based on material topology and graph theory; (3) a ‘passive-response’ assumption, in which the air phase is assumed to respond passively to the continuum part of the water phase. The incompressible inviscid Euler equations and the equations describing the free fall of rigid bodies are used as the governing equations for the continuum-buffer zone and the particle zone, respectively and separately. A number of examples, including water droplet impact, solitary wave propagation, and dam-break problems, are simulated for the illustration and validation of HyPAM. It is shown that HyPAM is more accurate and versatile than a continuum-based Volume-of-Fluid model. One major contribution of this work is the single-phase decomposition algorithm, useful for many other hybrid formulations. Neglecting surface tension, viscosity and particle interactions, HyPAM is currently limited to mildly-fragmented free-surface flows with high Reynolds and Weber numbers.
منابع مشابه
Incompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملA Hybrid Particle-Mesh Method for Viscous, Incompressible, Multiphase Flows
A hybrid method to simulate unsteady multiphase flows is described. One phase is represented by moving particles and the other phase is defined on stationary mesh. The flow field is discretized by a conservative finite volume approximation on the stationary mesh, and the interface is automatically captured by the distribution of particles moving through the stationary mesh. The effects of surfa...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009